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Motivation

» Advanced LIGO has detected gravitational waves from many
black-hole and neuron-stars mergers.

» However, signals from many of these object still are
parametrized by masses.

» Goal: predict chirp mass from signal



Recurrent neural networks

» A recurrent neural network (RNN) is a subclass of neural
networks which specializes in processing sequential inputs, like
gravitational-wave data.

» For our analysis, we use a special type of RNNs called a Long
Short-Term Memory (LSTM) network.



Long Short-Term Memory Networks

The advantages of LSTM networks over RNNs:

» The cell state carry information from past inputs. The
network can learn long-term dependencies and elimete the
vanishing (exploding) gradient problem.

> Gates let information to be added to (inputs gates) and
removed from (forget gates) the cell state



Model of network

> To generate mock data we used core package to analyze
gravitational-wave data, find signals, and study their
parameters: PyCBC

» We use a recurrent neural network (LSTM) as subclass of
neural networks which specializes in processing sequential
inputs.

> We have model mass chrip:
>

Mepirp = (My X m2)3/5/(m1 + ”72)1/5

Yacc = [mchirp]


https://github.com/gwastro/pycbc

Visualizing the mock data

[ approximant | massl | mass2 [ spinlz [ spin2z [ inclination [ coa_phase [ deltat [ flower |
[SEOBNRvA’ | 100 | 10 | 00 | 04 | 123 | 245 | 1.0/4096 | 40 |

— Hl
L

Strain

Time (s) +1.1925297229

Figure: Example of generated waveform without noise from (L1) LIGO

Livingston and LIGO Hanford(H1) and LIGO Virgo (V1) using above
parameters



Hyper-parameter tuning

» Hyper-parameters determine the network structure(e.g

number of LSTMs layers) and govern the learning process (e.g
learning rate), and other useful parameters.

> A major strength of LSTMs is the ability to store and use

information from past time.

» To search ! for the optimal parameters, we apply algorithm:

Tree-structured Parzen estimator.

» Validation loss function as minimization for

model.evaluate(X_Test, y_Test).

reg

hyper-parameter a priori optimal
activation choice("relu”,” tanh”) tanh
Ir /oguniform(anog(lO*ﬁ), anog(lOfZ)) 9.35 x 10 °
dropout uniform(0.0, 1.0) 0.37
uniform(10—%,10~3) 3.57 X 10~ °

numberofneurons

uniformint(64, 1024)

546

"We use library hyperopt




Model training- learning curves

» epochs: 100
» batch size: 32
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Figure: Learning curves for model with chirp mass.
RMSE ~ 0.05



Model Structure

input: | [(?, 1400, 1)]
Istm_input: InputLayer
output: | [(?, 1400, 1)]
A J
input: (?, 1400, 1)
Istm: LSTM
output: | (?, 1400, 200)
input: | (?, 1400, 200)
Istm_1: LSTM
output: (?, 200)
input: ?, 200
dense: Dense P ( )
output: (7, 2)




Error histogram - for arbitary unit
Masses were normalization. Our network requires masses normalize
in interval [0, 1]
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Figure: After normalization we calculate the
difference between Yjreq and Yopservation (X-axis.)



