# LSTM Model for prediction masses

Marcin Wierzbiński

AstroCeNT

November 10, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

### Motivation

 Advanced LIGO has detected gravitational waves from many black-hole and neuron-stars mergers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- However, signals from many of these object still are parametrized by masses.
- Goal: predict chirp mass from signal

#### Recurrent neural networks

- A recurrent neural network (RNN) is a subclass of neural networks which specializes in processing sequential inputs, like gravitational-wave data.
- For our analysis, we use a special type of RNNs called a Long Short-Term Memory (LSTM) network.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Long Short-Term Memory Networks

The advantages of LSTM networks over RNNs:

- The cell state carry information from past inputs. The network can learn long-term dependencies and elimete the vanishing (exploding) gradient problem.
- Gates let information to be added to (inputs gates) and removed from (forget gates) the cell state

# Model of network

- To generate mock data we used core package to analyze gravitational-wave data, find signals, and study their parameters: PyCBC
- We use a recurrent neural network (LSTM) as subclass of neural networks which specializes in processing sequential inputs.
- We have model mass chrip:

$$m_{chirp} = (m_1 imes m_2)^{3/5}/(m_1 + m_2)^{1/5}$$
  
 $Y_{acc} = [m_{chirp}]$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Visualizing the mock data

| approximant | mass1 | mass2 | spin1z | spin2z | inclination | coa_phase | delta_t  | f_lower |
|-------------|-------|-------|--------|--------|-------------|-----------|----------|---------|
| 'SEOBNRv4'  | 100   | 10    | 0.9    | 0.4    | 1.23        | 2.45      | 1.0/4096 | 40      |



Figure: Example of generated waveform without noise from (L1) LIGO Livingston and LIGO Hanford(H1) and LIGO Virgo (V1) using above parameters

(a)

э

#### Hyper-parameter tuning

- Hyper-parameters determine the network structure(e.g number of LSTMs layers) and govern the learning process (e.g learning rate), and other useful parameters.
- A major strength of LSTMs is the ability to store and use information from past time.
- To search <sup>1</sup> for the optimal parameters, we apply algorithm: Tree-structured Parzen estimator.
- Validation loss function as minimization for model.evaluate(X\_Test, y\_Test).

| hyper-parameter | a priori                                       | optimal               |  |
|-----------------|------------------------------------------------|-----------------------|--|
| activation      | choice(' relu' ,' tanh' )                      | tanh                  |  |
| lr              | $loguniform(np.log(10^{-6}), np.log(10^{-2}))$ | $9.35 	imes 10^{-5}$  |  |
| dropout         | uniform(0.0, 1.0)                              | 0.37                  |  |
| reg             | $uniform(10^{-6}, 10^{-3})$                    | $3.57 \times 10^{-5}$ |  |
| numberofneurons | uniformint(64, 1024)                           | 546                   |  |

<sup>1</sup>We use library hyperopt

### Model training- learning curves

- epochs: 100
- batch size: 32



Figure: Learning curves for model with chirp mass.  $RMSE \sim 0.05$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Model Structure



#### Error histogram - for arbitary unit

Masses were normalization. Our network requires masses normalize in interval  $\left[0,1\right]$ 



Figure: After normalization we calculate the difference between  $Y_{pred}$  and  $Y_{observation}$  (X-axis.)

(日) (四) (日) (日) (日)