

Introduction

In this poster I report numerical results for modeling of 2-MAX-SAT as the problem of the Ising model and using quantum simulator SimCIM [1] to solve this model. I show an algorithm of reduction from 2-CNF form into Ising models coefficient and our approach for optimization for SimCIM using hyperopt. I used SimCIM as classification for two classes SAT = 1UNSAT = 0. Optimization has contributed to improved results for 2-MAX-SAT.

2-SAT and 2-MAX-SAT

The 2-SAT is problem of determining the existence of a solution with two variables in one clause.

An example of a problem instance of 2-SAT and his 2-CNF(Conjuctive Normal Form)

$$F = (x_3 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2),$$

e.g $\Omega_1 = (x_3 \lor x_2)$ defines clause.

A related optimization problem known as 2-MAX-SAT is determining the maximum number of clauses, of a given Boolean formula in 2-CNF, that can be made true by an assignment of truth values to the variables $\{x_i\}_{i=1}^N$ of the formula. The 2-MAX-SAT is an NP-Hard problem.

The Ising Model

The Ising model is the mathematical description of phase transition in magnetic fields. The model is defined as weighted graph G = (V, E) where V is set of vertex, E is set of edges. Description of energy (Hamiltonian)

$$J_{ij}$$

$$H(s) = \sum_{\{ij\}\in E} J_{i,j}s_is_j + \sum_{j\in V} h_js_j$$

Here, $J_{i,j}$ correspond to weights of the edges and h_o are biases associated between spins s_i , s_j . Typically interested in finding a particular spin configuration $s^* = \arg \min H(s)$. Finding spin configuration is NP-Hard.

Hyperparameters optimization for quantum SAT classificator.

Marcin Wierzbiński

MIM UW

2-MAX-SAT into ISING MODEL

2-SAT is solvable in polynomial time.	The	coherent Ising	g machine (CIM) [2] ^a enables effi-
For each of two variables in clause	cient sampling of low-lying energy states of the Ising		
Ω_k where $k \in \{1, 2, \ldots, M\}$	Ham	iltonian. Hype	erparameters of SimCIM:
is defined variable		parametr	oznaczenie dla SimCIM
$\int -1$ if $x_i \in \Omega_k$ and is negation		Ν	number of iterations
$v_{i}^{k} = \begin{cases} 1 & \text{if } r_{i} \in \Omega_{k} \text{ and is negation} \\ 1 & \text{if } r_{i} \in \Omega_{k} \text{ and is not negation} \end{cases}$		sigma	noise level
$\int_{0}^{1} \int_{0}^{1} \frac{1}{k} don't occurs in kth caluse$		dt	learning rate
Rase on work from [1] and [2] for formulation Luse	4	zeta	coupling(zeta)
an algorithm presented below.	4	attempt_nun	n ample size
procedure $2CNFTOISING(F)$		alpha:	parametr of method SGD ^b
$M \leftarrow no of clauses for formula F$			
$M \leftarrow no$ of variables for formula F	Opt	timization for	or hyper-parameters SimCIM
$h \leftarrow \text{create a zero vector size N}$	<u> </u>		
$J \leftarrow \text{create zero marix size } N \times N$	l am	are intereste	d in random formulas 2-CNF gen-
$v \leftarrow \text{create zero matrix size } M \times N$	erate	ed by choosing	g uniformly at random (with fixed
for $i = 1M$ do	clause density, form amlong all possible clauses. The clause density is defined as:		
get index of variables i_1, i_2			
$var_1, var_2 \leftarrow +1, -1, 0$ as in v_i^k			M = (2)
$v[j, i_1] \leftarrow var_1$			$\alpha = \frac{1}{N} \tag{2}$
$v[j, i_2] \leftarrow var_2$	where $M = no$. of clauses and $N = no$. of variables.		
for $i = 1 n$ do	I def	ined a priors o	distributions:
for $i = 1 \dots M$ do		parameter	a priori
$i_1 \leftarrow -1$		Ν	quniform(300, 500, 10)
$j_1 \leftarrow 0$		sigma	uniform(0.0, 1.0)
if $v[i,i] <> 0$ & $i_1 == -1$ then		dt	loguniform($\ln(0.01), \ln(0.01)$)
$i_1 \leftarrow i + 1$		zeta	uniform(0.0, 2.0)
	ć	attempt_num	quniform(950, 1100, 5)
if $v[j, i] <> 0$ & $j_1 <> -1$ then		alpha	uniform(0.1, 0.9)
$j_2 \leftarrow i+1$	The objective function is defined as:		
break	$c(u, \hat{u}) = \frac{1}{N} \sum 1 (u, \neq \hat{u})$		
$J[j_1, j_2] \leftarrow J[j_1, j_2] + v[j, j_1] \cdot v[j, j_2]$	$C(g,g) = N \sum_{i=0}^{n} N(g_i \neq g)$		
$h[j_1] \leftarrow h[j_1] - v[j, j_1]$	I using generator from work: [3], adapted for		
$h[j_2] \leftarrow h[j_2] - v[j, j_2]$	this work c My results for optimization is here:		
return J, h	githu	ub.com/marci	n119a/sat-experiments
I obtain the local fields h and coupling J in terms of	f atı	nis simulator was da	veloped by prof A I Lyovsky

the parameters of the given 2-SAT instance. Energy of Ising is expressed as:

$$E_{Prob} = \frac{1}{4} E_{Ising} - \frac{1}{4} M \tag{1}$$

If $E_{Prob} = 0$ then F' is satisfiability SAT = 1.

The coherent Ising machine

MI

$$\alpha = \frac{M}{N} \tag{2}$$

$$c(y, \hat{y}) = \frac{1}{N} \sum_{i=0}^{N} \mathbb{1}(y_i \neq \hat{y})$$

was developed by plot. A. I. LVOVSKy ^bStochastic gradient descent ^chttps://bit.ly/342HFKq

mula.

Figure: Fraction of satisfiability formulas depends of picking α

- Calculate a probability sampling low energy state without finding a ground state.
- Investigate a phase transition without finding an exact ground state.
- Provide new metrics for loss, defined as subset maximum satisfiable percent, depending on critical point = 1
- [2] Egor S. Tiunov, Alexander E. Ulanov, and A. I. Lvovsky. Annealing by simulating the coherent ising machine. 27(7):10288.
- [3] Sebastian Jaszczur, Michał Łuszczyk, and Henryk Michalewski. Neural heuristics for sat solving, 2020.

Future work

REFERENCES

- [1] Siddhartha Santra, Gregory Quiroz, Greg Ver Steeg, and Daniel A. Lidar.
- Max 2-SAT with up to 108 qubits.
- *New Journal of Physics*, 16(4):045006, Apr 2014.

KONTAKT