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Introduction

§ Motivation
§ Showing that 2-SAT problem is solvable in polynomial time.
§ A short introduction to tensor product space and Ising model.
§ Reduction of MAX-2-SAT to the Ising model.
§ Results.



Motivation

§ Ising formulations of many NP-Hard problems 1

§ The coefficients of Ising model will define our calculation
problem

§ SAT – Automated theorem proving, CSP(Constraint
satisfiability problem)

§ 3-SAT – A very important problem in the world of in
computational complexity theory

1Frontiers in Physics http://dx.doi.org/10.3389/fphy.2014.00005

http://dx.doi.org/10.3389/fphy.2014.00005


NP-Hard problems

§ The class of problems for which there is an algorithm for
solving them in polynomial time is denoted by P.

§ There are problems that are not known if they belong to this
class, but you can check the correctness of the solution in
polynomial time.

§ We say such problems belong to class NP.
§ P Ă NP2. We can check the correctness of the solution in

polynomial time, simply by solving it ourselves.
§ A problem H is NP-Hard when each L P NP can be reduced

in polynomial time to H;

2We don’t know about NP Ă P.



2-SAT Problem

F “ px0 _ x1q ^ px0 _ x1q ^ p x0 _ x1q “ Ω1 _ Ω2 _ Ω3 (1)

For a given Boolean formula F in the 2-CNF form, determine
whether there is a boolean variable assignment such that formula is

TRUE. Otherwise, we say that F is unsatisfiable.

x0 x1 px0 _ x1q ^ px0 _ x1q ^ p x0 _ x1q

F F F
F T F
T F F
T T T

When the number of Boolean variable is n then number of different
assignments are 2n Important: Ωi we denote as clause.



MAX-2-SAT optimisation problem
Theorem
MAX-2-SAT is NP-Complete.
NP-completeness reduction: Any 3-SAT problem can be reduced to

MAX-2-SAT
We transform 3-SAT instance to 2-CNF form by replacing each

clause Ωi “ px1 _ x2 _ x3q

F “ px1 _ x1q ^ px2 _ x2q ^ px3 _ x3q ^ pΩi _ Ωi q

^p x1 _ x2q ^ p x2 _ x3q ^ p x1 _ x3q ^ px1 _ Ωi q

^px3 _ Ωi q

§ If an assignment satisfies Ωi , then exactly 7 of 10 clause in F
are satisfiable.

§ If an assignment does not satisfies Ωi , then exactly 6 of the 10
clause in F are satisfiable.



What we know about 2-SAT?

Theorem
The 2-SAT is solvable in polynomial time.



Intuition of reduction
Create directed graph G “ pV ,E q, with 2n vertex. Each clause we

reduce as:

pxi _ xjq ðñ p xi ñ xjq ^ p xj ñ xi q

Variable and their negations correspond to the vertex of this graph
and the edge pointing with xi Ñ xj is added if and only if the

implication xi ñ xj belongs into family F .
Example: F “ px1_ x2q^ p x1_ x2q^ p x1_ x2q^ px1_ x3q

Figure: Reduction graph for F



Strongly connected component

Definition
Strongly connected component of the directed graph G “ pV ,E q
we call a subset A Ă V such that @i‰j xi ,xjPA there is a path
between xi and xj .

Figure: Strongly connected component



Draft of proof for 2-SAT- lemma
Lemma
If both vertices xi and  xi are in a strong connected component
then the formula is unsatisfiable.

Proof.
Recall that if xi and  xi are in a strong connected component then
there is a pathway between xi   xi and  xi  xi . From
transitive property of implication:

rpxi ñ xmq ^ pxm ñ  xi qs ñ pxi ñ  xi q



2-SAT in class P

Theorem
Formula F is satisfiable if and only if no component of the strong
consistency G contains a variable xi and his negation  xi .

§ Proof ñ from previous lemma
§ Proof of this implication ð an interested reader can find at

work 3

3A linear-time algorithm for testing the truth of certain quantified boolean
formulas, Bengt Aspvall and Michael F. Plass and Robert Endre Tarjan



Phase transition

Definition
The clause density for the CNF formula: 2-CNF is defined as ratio:

α “
M

n
, (2)

where M number of clauses and n number of variables in F

§ F “ px1 _ x2q ^ px3 _ x2q

§ For α “ 2
3 and 5 of the interpretations satisfible F

§ F “ px1_x2q^px3_x2q^px3_x1q^p x3_ x2q^p x1_ x2q

§ For α “ 5
3 only one of the interpretation satisfiable F .



Phase transition for 2-SAT and 3-SAT

Figure: Phase transition for 2-SATpp “ 0q from work 4 on the Y axis
percentage of unfulfilled formula (UNSAT), on the X axis the clause
density

4Determining computational complexity from characteristic ‘phase
transitions’ Monasson, Rémi and Zecchina, Riccardo and Kirkpatrick, Scott
and Selman, Bart and Troyansky, Lidror



Tensor product of two vector space

Definition
The tensor product V bW of two vector spaces V and W over the
same field is a vector spaces, endowed with a bilinear mapping

pv ,wq : V ˆW :ÞÑ v b w P V bW

If tvs : s P Su and twt , t P T u are bases of V and W , and
dimpV q “ m and dimpW q “ n then mn elements form a basic of
V bW . If v P V and w PW then coordinate vector of v b w over
this basis is the outer product5 of the coordinate vectors of v and w
over the corresponding bases.

5v¨wT



The Pauli matrixes

Definition
The Pauli matrixes are set of three 2ˆ 2 complex matrices which
are Hermitian and ununitary, with eigenvalues `1,´1. They are

σx “

„

0 1
1 0



σy “

„

0 ´i
i 0



σz “

„

1 0
0 ´1



Identity matrix is given as:

12 “

„

1 0
0 1





The Kronecker product

Definition
The product of Kronecker’s two matrixes
A P MnˆmpCq,B P MpˆqpCq is the block matrix
Ab B P MnpˆmqpCq defined as:

Ab B “

»

—

–

a11B ¨ ¨ ¨ a1nB
...

. . .
...

am1B ¨ ¨ ¨ amnB

fi

ffi

fl

Example:

12bσz “

„

1 0
0 1



b

„

1 0
0 ´1



“

»

—

—

–

1 0 0 0
0 ´1 0 0
0 0 1 0
0 0 0 ´1

fi

ffi

ffi

fl



The Ising Model – unitary matrices

Definition
The Ising Model is a weighted graph, whose vertex are qubits. The
weights of the vertices are indicated as hi for i “ 1, . . . , |V |, and
weights of the edges are determined by Ji ,j .

Definition
The Hamiltonian of the Ising model in the calculation base is
defined as a matrix:

Hp “
ÿ

tijuPE

Ji ,jσ
pzq
i σ

pzq
j `

ÿ

jPV

hjσ
pzq
j (3)



With simple agreement:

σ
pzq
i “ 12

bpi´1qbσ
pzq
i b 12

bpn´i´1q (4)

σ
pzq
i σ

pzq
j “ 12

bpj´1qbσ
pzq
i b 12

bpj´i´1qbσ
pzq
j b 12

bpn´i´1q (5)



Ising Model – Intuition



Definition
Eigenfunction: Hp |ψy “ Ei |ψy

Remark
Hp is a Hermitian operator. rhij s “ rhji s.

Proof.
It follows from the definition of Kroneker product for matrix:
σ
pzq
i

Remark
Ground state of Hp is the vector of the form |x1y b . . .b |xny6 for
some txiuni“1, where xi P t0, 1u.

6We often talk about the computational basis



The Ising model solution:

Remark
Hp is hermitian operator, so it has real values pE0 ď E1 . . . ď E2n q.
Ground state is its lowest-energy state E0.

Definition
Ising’s computational problem is to find the ground state |ψy of
Eigenfunction Hp (such as in 10).



Reduction - Step 1

The first step is transforming from Boolean B “ tT ,F u to binary
variables xi “ t0, 1u, letting TRUE ÞÑ 0 and FALSE ÞÑ 1. The

truth table of OR becomes as multiplication of the binary variables:

p q p _ q

T F T

F T T

T T T

F F F

ÝÑ

xi ¨ xj xj xi
0 0 1
0 1 0
0 0 0
1 1 1

(6)

It also define variable:

vkj “

$

&

%

´1 if xj appears negated in kth clause
1 if xj appears unnegated in kth clause
0 if xj does not appear in kth clause

(7)



Reduction- Step 2

Definition
The local Hamiltonian for the Ωk clause is defined as

HΩk
“
1´ vkj1σ

z
j1

2
1´ vkj2σ

z
j2

2
(8)

Lemma
If exist an assignment txj1 , xj2u P t0, 1u

2, which violate the clause
Ωk then minimal energy of HΩk

is 1. If not exist an assignment
txj1 , xj2u P t0, 1u

2, which satisfied clause Ωk , then energy of HΩk
is

0.



Example

Example of local Hamiltonian for

F “ Ω1 “ p x1 _ x2q

then for such a formula reading from vj we obtain form:

HΩ1 “
1
4
r1´ p´1 ¨ σz1 b 12qs ¨ r1´ p12bσ

z
2qs “

1
4
¨

»

—

—

–

2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl

¨

»

—

—

–

0 0 0 0
0 2 0 0
0 0 0 0
0 0 0 2

fi

ffi

ffi

fl

“

»

—

—

–

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl



Example c.d

Let us note that HΩ1 has energies Ei and the corresponding states
|ψiy :

E1 “ 1 ÞÑ |ψ1y “ |01y “

»

—

—

–

0
1
0
0

fi

ffi

ffi

fl

E2 “ 0 ÞÑ |ψ2y “ |11y “

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

E3 “ 0 ÞÑ |ψ3y “ |10y “

»

—

—

–

0
0
1
0

fi

ffi

ffi

fl

E4 “ 0 ÞÑ |ψ4y “ |00y “

»

—

—

–

1
0
0
0

fi

ffi

ffi

fl

Logical assigments which, which violates the formula is: x1 “ 0,
x2 “ 1, remark(we write this as TRUE ÞÑ 0 and FALSE ÞÑ 1



Reduction- Step 3

Taking into account each local Hamiltonian HΩ, the problem
Hamiltonian is now constructed as

HPr “
ÿ

ΩkPF

HΩk
, (9)

that is the sum of the energy after all M clause contained in the
2-SAT.



Reduction – Step 4

HPr “
ÿ

ΩkPF

HΩk
, (10)

Summing up after all clauses local Hamiltonians:

HPr “
1
4

ÿ

ΩkPF

1´ vkj1σ
z
j1 ´ vkj2σ

z
j2 ` vkj1v

k
j2σ

z
j1σ

z
j2 (11)

After rescaling by a factor of 4 and dropping the constant term we
obtain:

hji “ ´
ÿ

k

vkji , Jj1j2 “
ÿ

k

vkj1 ¨ v
k
j2 , (12)



Reduction – algorithm

procedure InitIsing(F)
M Ð no. of clauses for formulaF
N Ð no. of variables for formula F
hÐ create a zero vector size N
J Ð create zero marix size N ˆ N
v Ð create zero matrix size M ˆ N
return N,m, J, h, v



procedure 2CNFtoIsing(φ)
for j “ 1..M do

get index of variables i1, i2
var1, var2 Ð +1, -1, 0 as in vkj 7
v rj , i1s, v rj , i2s Ð var1 Ð var2

for j “ 1..n do
for i “ 1..m do

j1 Ð ´1
j2 Ð 0
if v rj , is ăą 0 & j1 ““ ´1 then

j1 Ð i ` 1 continue
if v rj , is ăą 0 & j1 ăą ´1 then

j2 Ð i ` 1 break
Jrj1, j2s Ð Jrj1, j2s ` v rj , j1s ¨ v rj , j2s
hrj1s Ð hrj1s ´ v rj , j1s
hrj2s Ð hrj2s ´ v rj , j2s

return J, h



Reduction- step 5
Remark
Note that we can equally transform the equation as:

HPr “
1
4
M 1`

1
4
Hp

Example:

F “ px1 _ x2q ^ px2 _ x1q ^ px3 _ x1q ^ p x2 _ x1q

The result is v , J and h, whereby v is a size matrix 4ˆ 3

v “

vk1 vk2 vk3
¨

˚

˝

˛

‹

‚

1 1 0 Ð Ω1
´1 1 0 Ð Ω2
1 0 1 Ð Ω3
´1 ´1 0 Ð Ω4



Theorem

The main results of my work:

Theorem
For a given formula φ in the form of 2-CNF with M clauses, the
number of clauses to be satisfiable is K if and only if when
EIsing “ 4pM ´ K q `M, where EIsing is solution of the Ising model
with coefficients J, h.



Experiments:

§ D-Wave:
https://docs.dwavesys.com/docs/latest/c_gs_2.html

§ Wildqat https://github.com/satproject/Wildqat
§ SIMCim https://arxiv.org/pdf/1901.08927.pdf [2]
§ akmaxsat
§ MiniSAT http://minisat.se/MiniSat+.html
§ brute-force algorytm https://bit.ly/2GzP4Zo
§ Dataset generator D-SAT-(n) formulas from work 7 .

7Neural heuristics for SAT solving Sebastian Jaszczur and Michał Łuszczyk
and Henryk Michalewski [1]

https://docs.dwavesys.com/docs/latest/c_gs_2.html
https://github.com/satproject/Wildqat
https://arxiv.org/pdf/1901.08927.pdf
http://minisat.se/MiniSat+.html
https://bit.ly/2GzP4Zo


Comparing 2-SAT with MiniSAT algorithm

(a) The percentage of formulas
satisfiable averaged over what 1

10
depends on picking α.



Comparing MAX-2-SAT with algorithm akmaxsat

For selected 100 formulas with n P t300, 500, 700, 1000u

Error vs α



Future work

§ Is it possible to calculate a probability sampling low energy
state without finding a ground state?

§ How to investigate a phase transition without finding an exact
ground state?

§ Provide new metrics for loss, defined as subset maximum
satisfiable percent, depending on critical point “ 1

§ New experiments with Pegasus Topology



Sebastian Jaszczur, Michał Łuszczyk, and Henryk Michalewski.

Neural heuristics for sat solving, 2020.

Egor S. Tiunov, Alexander E. Ulanov, and A. I. Lvovsky.
Annealing by simulating the coherent ising machine.
27(7):10288.


